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Abstract 
The suitability is considered of employing a Taylor 
expansion of the kinematic scattering equation for 
analysing and interpreting diffuse diffraction intensi- 
ties induced by atomic displacements. The diffuse 
scattering caused by static atomic displacements in 
yttria-stabilized cubic zirconium oxide is used as a 
test of the method because a computer model of the 
local atomic structure exists that satisfactorily repro- 
duces the measured diffraction data. By concentra- 
tion on the computer model, it was possible to 
calculate the diffuse intensity using expansions to 
various orders and test the results against an exact 
computation of the diffuse diffraction pattern. In this 
example, where the r.m.s, atomic displacements are 
approximately 3%, it was found that the usual 
second-order expansion could not account for many 
diffraction features. Most notable was the inability 
of an expansion to second order to describe an 
observed asymmetry across certain reciprocal planes. 
Expansion to a minimum of three orders is necessary 
to describe such features qualitatively and an accu- 
rate quantitative fit of the diffraction pattern at 
moderate diffraction angles requires the use of a 
fourth-order expansion. 

1. Introduction 
Diffraction patterns from real crystals contain both 
the normal peaked Bragg scattering that arises from 
the long-range lattice periodicity and a broad 
(usually weak) diffuse intensity that reflects short- 
range deviations of the structure from the long-range 
average, Although, normally, emphasis is placed on 
the Bragg intensities, the diffuse component has long 
been the subject of study because local atomic 
arrangements that deviate from the average often 
give rise to important physical properties. Unfor- 
tunately, the diffuse diffraction pattern can be diffi- 
cult to interpret because, inevitably, information 
regarding both the local chemical pair correlations 
and the distribution of static and thermal atomic 
displacements will contribute to the total scattering. 

In early studies of short-range order in alloys 
(Cowley, 1950), the effect of static atomic dis- 
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placement was neglected and the total diffuse inten- 
sity was treated as arising only from short-range 
chemical order. This interpretation was known to be 
in error because of a clear asymmetry across Bragg 
peaks observed in the diffraction patterns of the 
alloys being studied. This asymmetry results from 
static atomic distortions associated with local order- 
ing. These distortions, often called atomic size-effect 
displacements, were partially accounted for by 
Warren, Averbach & Roberts (1951), who employed 
an analysis method based on a Taylor expansion to 
first order in atomic displacement of the complex 
exponential in the kinematic scattering equation. The 
origin of the asymmetry was successfully described 
and a practical way to interpret diffuse diffraction 
patterns was provided. 

Today, the expansion is normally performed out 
to harmonic terms. Methods of analysis based on the 
efforts of Boric & Sparks (1971), Tibballs (1975) and 
Georgopoulos & Cohen (1977) are used to separate 
the total diffuse intensity into component short- 
range-order, average-pair-displacement and mean- 
squared-displacement intensities. The component 
intensities can be transformed to obtain real-space 
parameters that describe the local atomic arrange- 
ments. These methods have been used for the investi- 
gation of short-range order in metallic alloys 
(Cenedese, Bley & Lefebvre, 1984), vacancy defect 
clusters in oxides (Hayakawa & Cohen, 1975), 
Guinier-Preston zones in both binary and ternary 
aluminium-based alloys (Matsubara & Cohen, 1985; 
Haeffner & Cohen, 1992), static atomic dis- 
placements surrounding interstitial carbon in iron 
(Butler & Cohen, 1992) and several other systems. 

The accuracy of using methods that truncate the 
Taylor expansion at second order can, in principle, 
be tested by performing the analysis using both 
second- and third-order expansions and comparing 
the results to confirm that the series has converged. 
Unfortunately, this is difficult, in practice, because 
the third-order expansion contains more than double 
the number of component intensities in a second- 
order expansion. This necessitates a data-set size that 
may be difficult to collect and that would strain 
current analysis procedures. Limited versions of this 
test have been performed by Bubeck & Gerold (1986) 
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and Mfiller, Sch6nfeld, Kostorz & Bfihrer (1989), 
who concluded that the neglect of higher-order terms 
would introduce unacceptable errors into the deter- 
mination of the chemical short-range-order param- 
eters. Both of these studies, however, used reciprocal 
line scans in which the diffuse intensity out to very 
large scattering vectors had to be included and so 
were not fair criticisms of the methods currently 
practised, in which a more restricted reciprocal-space 
volume is used (Cohen, 1986). 

The reliability of using the second-order expansion 
to determine local-order parameters is tested, in 
practice, by measuring the diffuse-scattering data in 
absolute intensity units and comparing the first 
chemical order parameter with the value unity, as 
required by definition but not by any numerical 
constraint. A value close to this would be unlikely to 
occur by accident, so this parameter can be used as a 
measure of the accuracy of the local-order diffuse- 
intensity component. Unfortunately, there is no 
equivalent test of the reliability of the atomic- 
displacement diffuse intensity so, at present, one 
must be satisfied when the diffraction equation, 
expanded to second order, closely fits the data. A 
good fit to the data does not, however, guarantee 
that the displacement parameters that have been 
solved for are accurate - only that their form can 
describe the data. It would be reassuring to have 
some independent means to evaluate this aspect of 
the method. 

In the present study, a computer model of static 
atomic displacements is used to test the accuracy of 
the second-order expansion for the particular 
example of metal-atom distortions in yttria-stabilized 
cubic zirconium oxide. The model, which contains a 
realistic distribution of displacements, is used to 
compute the diffuse intensity exactly. A comparison 
is then made with calculations based on expansion of 
the kinematic scattering equation to second, third 
and higher orders. The use of this computer model 
allows the entire distribution of displacements (and 
thus its Fourier transform) to be probed so that a 
greater insight into the various approximations can 
be gained. The results of this study can be used as a 
guide in other systems that contain atomic dis- 
placements of similar form. 

2. Static-displacement-caused diffuse intensity 

The diffuse part of the diffracted intensity from a 
real crystal can be written simply as the difference 
between the total intensity, Itot(k), and the intensity 
from a hypothetical average crystal, lave(k), in which 
all of the chemical and displacement correlations are 
replaced with the long-range averages 

ID(k) = Itot(k)- lave(k). (1) 

For a multicomponent system, this can be expressed 

a s  

ID(k) = E ~'. c~P/Jm,,ffj*(exp[ik'(8~m,,-~o)]) 
ij Iron 

× exp(ik'r,m,) - Z Z c~cjffj* 
O" Iron 

x (exp[ik.(8~ - ~o)])exp(ik • r,,,,). (2) 

The summations are over all i and j, which label 
particular chemical species/sublattice combinations 
and over all triplets, lmn, which describe allowed 
interatomic vectors of the average crystal structure. 
Io(k) is the diffuse intensity in electron units per 
primitive unit cell at scattering wave vector k; P~n is 
a conditional pair probability describing the likeli- 
hood of finding an atom with label j at the end of an 
interatomic vector rz,~n given an atom with label i at 
its origin; gi is the displacement of an i atom from its 
ideal site; the subscripts o and lmn refer to atoms at 
the origin and end, respectively, of a given inter- 
atomic vector and the subscript ~ refers to a site at 
long range where displacement correlations are 
absent; c~ is the sublattice concentration of i, f is the 
atomic scattering factor of the ith component; fj* is 
the complex conjugate offj; and lattice averages are 
indicated by (). 

Equation (2) can be derived directly from the 
standard kinematic scattering expression simply by 
replacing the actual identities by their averages (i.e. 
c~P~,,) and replacing the exponentials over atomic 
displacements by average complex exponentials. The 
pair probabilities and the averages indicated by ( )  
are to be taken over only the particular sublattice/ 
species combinations indicated by the subscripts 
and superscripts. The expression (exp[ik. (~10-  ~oA)]), 
for example, is the average exponential of the differ- 
ence between the displacements of atoms of types A 
and B that are separated by an interatomic vector rz~o. 

It is clear that (2) describes only the diffuse com- 
ponent of the total intensity, because, for distant 
interatomic vectors, the two summations will cancel. 
Only those terms involving short-range chemical 
and/or displacement correlations will contribute and 
thus ID(k) describes features that are broad and 
extended in reciprocal space exclusively. Likewise, 
the second term in (2), which describes the scattering 
from the average crystal structure, contains only 
sharp Bragg-like features. 

Equation (2) can be simplified somewhat by com- 
bining the two summations. Explicitly performing 
the dot products and rewriting in terms of the con- 
tinuous reciprocal-space coordinates, h~, hz and h3, 
one obtains 

l,, = E Y c;cJ,.fj*{(1 - - L . )  
ij lmn 

X <exp[i2rr(h,Xim,, + h2yifm,, + h3ZYmn)])  

- (exp[ i2rr (h ,X~  + h2Y~ + h3Z~)])} 

X exp[i27r(hll + h2m + h3n)]. (3) 
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Here, the aYm. are the Warren short-range-order 
parameters given by 

aym. = 1 - (P~,,/9) (4) 

and 

Xi~mn = 6 ~ j n _  ¢~xi etc. (5) 

As discussed in the Introduction, to understand 
and interpret the diffuse intensity from real crystals it 
often helps to express (3) as a sum of component 
intensities. This can be done simply by performing a 
Taylor expansion on the complex exponentials, i.e. 

(exp(a)) = 1 + (a) + (1/2!)(a 2) + (1/3!)(a 3) + ... ,  (6) 

where 

a = i27r(hlX ~ + h 2 yij + h3ZiJ). (7) 

Given that 

([i2zr(h~X~ + h2yijoo + h3ZiJoo)]n)=o (8) 

and n is odd, the diffuse intensity, ID, can be written 
as 

ID = Io + I~ + I2 + I3 + . . . ,  (9) 

where 

I0 = - 2 Z c i g f f j *  ai/m,, 
ij lmn 

x exp[i27r(hll + hzm + h3n)] (10a) 

I~ = i2zrZ Z ci@ffj*(1 - a~m,,) 
ij lmn 

X <(h,XYtnn + h2 YYrnn 4- h3ZYmn) > 

x exp[i2rc(h,l  + h2m + h3n)] (10b) 

12 = - 2 r a z  Y c, cJ,£.*[(1 - a'/m,,) 
ij Iron 

X ((hlX~lmn + h 2 YYmn + h3Z~Jmn)2> 

- ((h,Y~ + h2 Y~ + h3Z~)2>] 

x exp[i2"n'(hll + h2m + h3n)] (lOc) 

I3 = Z Z c, cjf,.fF(1 - 
ij Iron 

x <(h,x#. .  + h2 re/,.. + h3zG)3> 

x exp[ i2~(h l l  + h2m + h3n)] (lOd) 

etc. Finally, from the indicated products and the fact 
that each component intensity must be real, (10) can 
be written 

Io = - E E cic+ff* oli/rnn 
i j  Inn 

× cos[2zr(hfl + h2m + h3n)], (1 la) 

I, = - 27rZ Z CiCjft'fj*(1 -- Olf'mn) 
ij Inn 

X [hl<XYmn> -t- h2( rYmn> + h3<ZYmn>] 

× sin[2w(hll + h2m + h3n)], (1 lb) 

I2 = - 27r22 Z c i g f f j * (  1 - a~..) 
ij lmn 

x {h~[<(X~.,,)2> - (1 - ~'m.) - '<(X~)2>]  

+ h~[<(Yff.,,)2> - (1 - a~/m.)-'<(Y~)2>] 

+ h~[((Zym.)2> - (1 - O[~nn)-l<(ziJoo)2>] 

+ 2h,h2<(XYm,,YYm,,)> + 2h,h3<(Xg,,,,Zi/.,,,)) 

+ 2h2h3((Y~,,,Z~m,,)>} 

x cos[2~-(h,l + h2m + h3n)], (1 lc) 

13 = (4/3)zr3Z Z c,ejffj*(1 - a~,,.) 
O lmn 

x + + 

+ 3h~h2((Xi/..,,) 2 Yg..) + 3h~h3<(Xi/m.)2Zy.,.> 

+ 3h~hl(( Y~m.)2XYm,,> + 3h2h3<( Yg'nn)2Z~/mn> 

+ 3h~h,((Zym,,)2xi/.,,,) + 3h~h2<(Z~/j,.) 2 Yg,,,,) 

+ 6h,h2h3(Xgg,,,Yg..ZYm.)] 

× sin[2zr(h,/+ h2m + h3n)]. (1 ld) 

Some important aspects of (11) should be pointed 
out here. Io describes both the Laue monotonic 
intensity (corresponding to l m n =  o) and the well 
known short-range-order (SRO) diffuse intensity. It 
is a cosine Fourier sum and thus represents an 
intensity component that is symmetric about the 
fundamental reflections. Ii describes the first-order 
static-displacement intensity, or the so-called Warren 
size-effect intensity. This term involves a sine Fourier 
sum and so is antisymmetric, producing the familiar 
transfer of intensity from one side of a Bragg peak to 
the other. 12 represents an intensity component due 
to mean-squared static atomic displacements. 
Because this is the first symmetric term that involves 
static displacements, it contributes to what is com- 
monly called the Huang diffuse intensity. The 
remaining intensity components are alternately anti- 
symmetric and symmetric about the fundamental 
reflections and only in the limit of an infinite number 
of such terms is this expression exact. 

Equation (11) is not limited to the description of 
static-displacement-caused diffuse scattering but can 
also describe thermal diffuse scattering (TDS) if the 
indicated averages are taken as temporal as well as 
spatial. The so called 'first-order TDS' will then 
appear in the term I2, the second-order TDS in 14 etc. 
The present study did not model thermal dis- 
placements and so the computed scattering originates 
from the static displacements only. 

Intensity components of higher order than 12 have 
not been rigorously included in any studies involving 
the analysis of full reciprocal-space volumes because 
an impractical number of component intensities are 
required even for simple systems. For example, in 
two-component materials there will be one short- 
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range-order term, six Warren size-effect terms,* 18 
second-order displacement terms and 30 terms 
associated with the intensity I3. The inclusion of the 
55 terms necessary to describe a binary system using 
a third-order expansion would strain current experi- 
mental and numerical methods. 

3. The computer model 

In order to probe aspects of the approximation 
represented by the expansion of (3), a computer 
model of the metal-atom distortions in yttria- 
stabilized cubic zirconium oxide, taken from a sepa- 
rate study (Welberry, Butler, Thomson & Withers, 
1993), is employed. The model was developed using 
an interative process in which atomic distortions 
were applied to the metal lattice (using Monte Carlo 
techniques) based on a particular arrangement of 
vacant oxygen sites. The computed diffraction effects 
from these displacements were then compared with 
measured diffraction data and the model was 
improved until a good fit was obtained. 

This particular model is a convenient choice for 
this study because two approximations can be 
applied to (11) that help to simplify the final inter- 
pretation. First, the metal atoms, because of their 
large scattering power relative to the oxygen lattice, 
will dominate the scattering, so the diffuse intensity 
due to oxygen may be left out of the current analysis; 
second, the scattering-power difference between zir- 
conium and yttrium is at most one electron, so the 
metal lattice can be treated as if it contains a single 
atomic species. In this case, the intensities Io and I~ 
of (11) vanish, the number of terms in I2 is reduced 
to six and the number in I3 to ten. The diffuse 
intensity can now be written 

I o = I 2  + I3 + .. . ,  (12) 

where 

12 = -- 2'n'2f 2 ~ {h2[(X2,,,,,) - (X2)] 
lmn 

+ h2(< Z2rnn> __ ( y 2  5) + h2(<Z2mn > _ <Z 2 >) 

+ 2h,h2(Xtm,,Y,m,,)+ 2hlh3(XtmnZ, m,,) 

+ 2h2h3(Ytm,,Z,m,,){cos[2zr(h~l + h2m + h3n)]} 
(13a) 

and 

13 = (4/3)7r3f2 ~ (h3(X3mn) + h3(y3,,)+ h3(Z3mn ) 
lrnn 

2 2 2 2 + 3h,hz(X,m,,Y,m,,)+ 3hlh3(X,mnZtmn) 

+ 3h~hl( 2 2 2 YlmnXlmn> q- 3h2h3( YlmnZlmn> 

* Note that the nine size-effect terms implicit in ( l ib)  for a 
binary system can be reduced to six by adding the constraint that 
the average lattice must be satisfied. That is, the weighted average 
displacements of  the AA, AB and BB pairs must sum to zero. 

+ 3h~h,(Z~m,,X,m,,)+ 3h~h2(Z~mnY~mn) 

+ 6hlh2h3(X, mn Yl,,,~Z,mn)) 

X sin[2zr(hll + h2m + h3n)]. (13b) 

Fig. l(a) shows the diffraction pattern of the 
reciprocal layer h3 = 1/2. It was computed directly 
from a 32 x 32 x 32 unit-cell computer model of 
cubic zirconium oxide and is similar to a measure- 
ment of the diffuse intensity in this system 
(Welberry, Withers, Thomson & Butler, 1992). Pair 
correlations in this simulation did not extend beyond 
a few unit cells so the computed diffraction images 
were not affected by the limited size of this simu- 
lation. The computation was made using a direct 
Fourier summation technique (Butler & Welberry, 
1992) that is exact within the limits of the model and 
so corresponds to the case where an infinite number 
of terms is included in the Taylor expansion. Identi- 
cal scattering curves were used for both the Zr and Y 
atoms and only the scattering component due to 
metal-atom displacements is included so that direct 
comparison can be made with intensities calculated 
using (13). Because thermal displacements were not 
modelled, the scattering curves were not corrected by 
a thermal Debye-Waller factor. This diffraction 
image, which is displayed as a grey-scale reproduc- 
tion of the computed intensity values for clarity, 
forms the reference to which other calculations, 
employing the expansion technique, will be com- 
pared. 

This diffraction pattern has many interesting 
features. For instance, there are clearly visible 'dark 
lines', perpendicular to (110), that result from dis- 
placement correlations associated with the atomic- 
size effect (Butler, Withers & Welberry, 1992). 
Diffuse peaks that lie in pairs either side of the dark 
lines can also be seen. These maxima in the diffuse 
intensity result from atomic distortions caused by a 
locally ordered distribution of oxygen vacancies 
(Welberry et al., 1993). As in the measured diffrac- 
tion images, the diffuse peaks nearest to the origin of 
the reciprocal lattice are significantly weaker than 
their partners on the opposite side of the dark lines. 
It was discovered, when the computer model describ- 
ing these displacements was developed, that the 
amount of this asymmetry was sensitive to the mag- 
nitude of the applied distortions. From this, it was 
possible to develop a model of the structure in which 
the displacements should be correct in both magni- 
tude (a 3% r.m.s, distortion was found to be best) 
and form. 

4. Comparison of intensities using second- and third- 
order expansions 

From the computer model, it is simple to calculate 
the pair displacement averages, (X~mn>, (X~m,,Ytm,,) 
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etc., directly for each lattice vector, lmn, and so 
perform the sums indicated in (13). This was done 
using the same scat ter ing-factor  curves as were used 
in Fig. l(a) and so should reproduce it in both form 
and absolute magni tude  within the limits of  the 
approx imat ion  made  by t runcat ion  of  the Taylor  
expansion.  The diffuse intensity computed  using only 
the intensity 12 of  (13) is presented in Fig. l(b). Mos t  
features of  Fig. l(a) are reproduced in this figure, 

including the ' da rk  lines' and the pairs of  diffuse 
peaks on either side of  the da rk  lines. Fig. l(b) does 
not, however,  show an asymmet ry  in the intensity of  
the diffuse peaks  across the dark  lines as is observed 
in the measured da t a  and the model  computa t ion  of  
Fig. l(a). The reason for this is that  the intensity 
term 12 is a cosine Four ie r  summat ion  and so can 
only describe a diffuse intensity that  is symmetric  
about  planes connecting integer reciprocal positions. 

Fig. 1. (a) The h~ = 1/2 diffuse section of a computer model of the metal-atom distortions in cubic yttria-stabilized zirconium oxide. This 
pattern was computed using a direct summation technique that is exact within the limits of the computer model and resembles a 
measurement of the diffuse intensity. Note the asymmetry in intensity of the diffuse maxima across the dark line indicated by the 
arrows. (b) The same reciprocal section as in (a) but computed using only those terms contained in a second-order Taylor expansion. 
(c) The same section computed using terms to third order. (d) The same section, computed as in (a), but with all atomic distortions 
reduced by a factor of five. The diffuse asymmetry has now disappeared. (a)-(c) are displayed on an equivalent linear grey scale such 
that white corresponds to 375 electron units per metal atom. (d) is scaled by an additional factor of 25 so that it can be compared 
directly with (b). 
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It is thus not possible to reproduce the asymmetry of 
Fig. l(a) using the diffuse intensity component 12 
alone. 

In Fig. l(c), the terms contained in the (antisym- 
metric) intensity component 13 have been added to 
the computation. This diffraction pattern is an 
improvement over the second-order expansion of 
Fig. l(b) as the asymmetry in the intensities of the 
pairs of diffraction maxima separated by the dark 
lines is now clearly visible. Essentially, all of the 
diffuse features present in the model diffraction pat- 
tern are represented in this figure. 

To demonstrate that the observed asymmetry 
results directly from the magnitude of the atomic 
distortions present in the model, Fig. l(d) was com- 
puted in a manner analogous to Fig. 1 (a) except that 
all atomic displacements were reduced by a factor of 
five. The r.m.s, atomic displacements for this figure 
are, therefore, only one-fifth the size of those in the 
original model (0.6% compared with 3%). This dif- 
fraction image shows none of the asymmetry appar- 
ent in the original model and comparison of Fig. 
l(d) with Fig. l(b) shows that the approximation 
made by a second-order expansion, when the dis- 
placements are less than 1%, is accurate across the 
whole reciprocal section shown. 

5. Quantitative comparison 

From the original (3% distortion) computer model, 
it is evident that, while all of the major qualitative 
features of the diffraction pattern have been repro- 
duced by using an expansion to third order, there 
remains a large quantitative discrepancy between 

0.03 

. . . .  g(X,~o) 
g(X..) 

0.02 

GI 

¢~  

o 0.01 

0.00 . . . .  
-0.10 -0.05 0.00 0.05 0.10 

Pair Displacement (X~.=) 

Fig. 2. The pair displacement distribution functions for long-range 
(uncorrelated) atom pairs and for near-neighbour atom pairs 
separated by (100) taken from the computer model. The arrows 
indicate the three maxima in the long-range trimodal distribu- 
tion explained in the text. 

Figs. l(a) and (c). This is shown clearly by the 
saturation of the diffuse maxima, which is most 
pronounced at the highest diffraction angles. (Note 
that the calculation scales, data plotting and photo- 
graphic reproductions of these figures were identi- 
cal.) When comparison is made close to the 
reciprocal origin, there is little apparent difference, 
but beyond the dark band connecting the 4,0,1/2 and 
0,4,1/2 positions the effect becomes quite noticeable. 
At this stage, the accuracy of using an expansion to 
only third order begins to degrade significantly. 

To understand where this approximation breaks 
down, it helps to isolate one term of the expansion 
and study how each expansion order contributes to 
it. This can be done conveniently for the interatomic 
vector lmn = 100, which makes a large contribution 
to the total diffuse intensity. To simplify the present 
discussion, consider the contribution of this inter- 
atomic vector along the reciprocal line where h2 = h3 
= 0. Here, the Taylor-expansion approximation can 
be written 

<exp(i2~'h~X, oo)) - <exp(i2zrh~Xoo)) 

= - 2~-Zh~((X~oo) - ( X ~ ) )  + i(4/3)~'3h3(X3oo) + . . . .  
(14) 

The terms on the left-hand side of (14) are Fourier 
transforms (of the x components) of the displace- 
ment distribution functions of atom pairs separated 
by near-neighbour 100 and long-range lattice vec- 
tors, respectively. These two distributions, which we 
label g(X,00) and g(X=) ,  are shown in Fig. 2. 

Contrary to what might initially be expected, the 
long-range (uncorrelated) pair-displacement distribu- 
tion given by the solid line in this figure is not a 
simple single-peaked function but contains three 
main maxima, indicated by arrows. This trimodal 
distribution occurs because the metal atoms in the 
computer model have, mainly, two distinct local 
environments. A particular metal atom will either be 
coordinated by a completely filled shell of near- 
neighbour oxygen atoms or it will lie near to one or 
more vacant oxygen sites. In the latter case, the 
metal-atom displacement will be controlled by direct 
near-neighbour interactions and so will be large as 
otherwise the displacements will result from more 
indirect effects and will be small. The three peaks in 
the pair-distribution function correspond to neither 
atom, one atom or both atoms of the pair having 
oxygen-vacancy near neighbours. The form of this 
pair-displacement distribution function arises simply 
because a metal atom is either near a lattice 'defect' 
or is not. Multimodal distribution functions like this 
one will therefore be likely to occur in many crystals 
that contain defects. 

The distribution g(Xo~) is symmetric because the 
long-range average cubic symmetry of the crystal 
must be retained. The Fourier transform of this 
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distribution will contain only real (symmetric) com- 
ponents. The distribution g(X~o0) is more general and 
so will contain both real (symmetric) and imaginary 
(antisymmetric) components. The right-hand side of 
(14) describes the difference between these two trans- 
forms as a polynomial function of the reciprocal 
coordinate hi. 

The difference Fourier transforms of the distribu- 
tion functions displayed in Fig. 2 were computed out 
to h~ = 6 and are presented as solid curves in Figs. 
3(a) (symmetric component) and (b) (antisymmetric 
component). These curves are compared with those 
computed using a Taylor-expansion approximation 
out to various orders. Both figures have been given 
the same vertical scale. The quantitative accuracy of 
the Taylor expansion is thus clearly displayed in this 
figure. A second-order expansion accurately 
describes the symmetric part of the transform out to 
about h~--3 but at h~ = 5 it is in error by nearly 
50%. An expansion to the fourth order approxi- 
mates the real part of the transform very well out to 
h~--5 (now the error is reduced to only 5%) and a 
sixth-order expansion is nearly indistinguishable 
from the exact transform over the full range of the 
figure. 

• • . i • • . i . . . i . . . i . . . . .  

(a) i / '  / 
0.04 Exact Transform / . /  

M . " . ....... 2 Order Expansion /" . ~ . . - ' "  
=~ . . . .  4 t" Order Expansion / .Z~'."" 

t h  . . "  e -  S >~ ----- 6 Order Expansion ,./ ,.,~ " y "  E 

"~ 0.02 

I- ~ ,(Syiletril Cimplnlnl) i 0.00 

0.04 .......... 1 Order Expansion ,i 
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Fig. 3. The symmetric and antisymmetric parts of the Fourier 
transform of the difference between the two distribution func- 
tions of Fig. 2 along the (h,00) reciprocal-space direction. The 
solid line represents the exact transform and the broken lines 
indicate Taylor-expansion approximations to various orders. 
Even and odd terms in the expansion contribute only to the 
symmetric and the antisymmetric parts, respectively, of the 
transform. 

As discussed earlier, an expansion to second order 
does not contain any antisymmetric components 
because the first-order term cannot contribute in this 
example. At h~ = 3, this antisymmetric component 
contributes 28% to the total (of the lmn = 100 term). 
At hi = 4, this has risen to nearly 40% of the total 
and can no longer be ignored. Inclusion of a third- 
order term in the expansion improves the situation a 
great deal and an accurate description of the anti- 
symmetric part of the transform out to h~ = 4 is 
obtained. The addition of a fifth-order term to the 
expansion gives an accurate quantitative fit out to 
h~ = 6 (near the physical limit of measurement when 
using Cu Ka radiation). 

6. Concluding remarks 

An average 3% static atomic distortion is larger than 
would be found in many systems where the Taylor 
expansion has been employed, such as most short- 
range-ordered alloys, where typical atomic dis- 
placements are nearer to 1%. But, for materials such 
as stabilized zirconium oxide, which has a large 
proportion of oxygen vacancies (10%), and crystals 
that are dominated by defect clusters, the dis- 
placements are often of this magnitude. In these 
cases, the results from this study can be used as a 
guide in estimating an appropriate experimental 
upper limit to the diffraction angle where the expan- 
sion approximation remains valid. 

In the yttria-stabilized zirconium oxide example, 
the metal-atom diffraction contrast is minimal so 
most of the diffuse scattering can be attributed to 
displacement terms of second or higher order. In this 
instance, any errors resulting from truncation of the 
Taylor expansion are magnified - and, if the expan- 
sion is made only to second order, the scattering 
equation cannot even describe the diffuse asymmetry 
that is one of the defining features of the diffraction 
pattern of Fig. l(a). However, in crystals where there 
is a large scattering contrast, the diffuse intensities Io 
(short-range-order scattering) and I1 may dominate 
the diffraction pattern and lessen the impact caused 
by neglect of higher-order displacement terms. 

The consequences of neglecting these higher-order 
terms will also vary with the form of the pair dis- 
placement distribution functions that exist in the 
material under study. For instance, if these distribu- 
tions are broad but symmetric, the intensity 13 will be 
negligible but I4 could be significant. Multimodal 
distributions, like the one shown in Fig. 2, will 
probably be found in many systems where two or 
more distinct local atomic environments exist. The 
results from this study will most generally apply to 
such crystals. 

Unfortunately, it is not possible to analyse directly 
diffuse-scattering data using (3) because the recipro- 
cal coordinates are contained inside the average 
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exponentials and the displacement distribution func- 
tions are not known. Also, the geometric growth in 
the number of terms in the Taylor expansion severely 
restricts the order to which this expansion can be 
successfully applied to real diffraction data. There- 
fore, when the displacements are large, the Taylor 
expansion must be abandoned in favour of methods 
based on direct simulation of the defects or perhaps 
other (nonlinear) descriptions of the diffuse intensity, 
for instance one based on a cumulant expansion of 
the exponential. 

The displacement correlation parameters that arise 
naturally in the Taylor-expansion description should 
not be forgotten entirely even in such instances, 
because these parameters are convenient to use in the 
qualitative description of displacement disorder and 
can thus aid understanding of the origins of many 
diffuse features. For example, the Warren size-effect 
intensity contains parameters that describe the devia- 
tions of pair distances from the long-range average 
and give rise to an easily interpreted diffuse asym- 
metry. The forms of the displacement correlation 
parameters associated with the intensity 12 have also 
recently been used to describe successfully the diffuse 
absences that are evident in some diffraction pat- 
terns, such as those present in the diffraction image 
of Fig. l(a) (Butler, Withers & Welberry, 1992). 

The authors thank Dr R. L. Withers for valuable 
discussions during the preparation of this manu- 

script. The diffuse-scattering images of Figs. 1 (a) and 
(d) were computed on a Fujitsu VP-2200 supercom- 
puter using a grant from the Australian National 
University Supercomputer Facility. 
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Abstract 
To determine the partial structure associated with a 
particular element in a multicomponent system, con- 
trast variation is proposed based on the use of 
modulated anomalous X-ray scattering (MAXS). 
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The photon energy of the X-ray beam incident on 
the sample is modulated over a range of energies 
below an absorption edge of the selected element. 
Because of anomalous dispersion, measurement of 
the scattered-intensity gradient with respect to the 
energy gives the required information. MAXS can be 
used in both small-angle and wide-angle diffraction 
and is applicable, in principle, to crystalline, 
amorphous and liquid materials. Energy modulation 
obtained by oscillating the Bragg angle of the mono- 
chromator by a small amount, followed by phase- 
sensitive detection, leads to a significant reduction 
of both systematic and statistical errors. Results of a 
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